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Abstract: Accurate carbon price forecasting is critical for carbon trading markets to function properly 
and to meet carbon reduction objectives. However, carbon pricing data are highly nonlinear, non-
stationary, and complicated, offering considerable problems to typical econometric models. To solve 
these challenges, this work introduces a new hybrid forecasting model, the SSA-VMD-ARIMA-
CNN-LSTM model. The model uses Variational Mode Decomposition (VMD) to break down the 
original carbon price series into linear and nonlinear components, with an adaptive Sparrow Search 
Algorithm (SSA) optimizing VMD settings. An empirical analysis using carbon trading data from 
Fujian Province shows that the proposed model significantly outperforms single machine learning 
models and traditional forecasting approaches in terms of accuracy and robustness. The 
Autoregressive Integrated Moving Average (ARIMA) model is used to model the linear component, 
while Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and 
hybrid CNN-LSTM models are applied to various nonlinear components based on their 
characteristics. The findings offer important insights for investors, businesses, and policymakers in 
carbon markets. 

1. Introduction 
Climate change has steadily grown to be a significant factor influencing the political, economic, 

and social stability of the world in recent years. The most important strategy to stop global climate 
change and lower the frequency of extreme climatic occurrences is to control greenhouse gas 
emissions. 

One crucial step in achieving the "dual carbon" targets and lowering carbon emissions is the 
establishment of a carbon emission trading market. [1]The "carbon price" is the cost of carbon 
emission trading rights. The pricing mechanism, which is the central mechanism of the carbon trading 
market, significantly affects how the market operates. Carbon pricing is crucial for the Chinese 
government, businesses, and market to analyze the variables affecting carbon pricing and make 
accurate predictions about them[2] 

Carbon prices often fluctuate due to multiple factors such as economic development, policy 
changes, energy structure transformation, and market sentiment. This high complexity and 
uncontrollability give carbon prices distinct characteristics of nonlinearity, non-stationarity, and high 
complexity.[3] From a theoretical perspective, carbon quota prices include both long-term trend 
components, reflecting the overall direction influenced by macroeconomic development and carbon 
reduction policies, as well as short-term high-frequency fluctuation components, such as those 
influenced by market sentiment, energy supply and demand, and unexpected events. Traditional 
methods struggle to balance both components, often facing limitations in fitting accuracy[4]. Therefore, 
models with higher complexity and stronger nonlinear feature learning capabilities are required for 
forecasting. Based on the above background, this paper proposes the SSA-VMD-ARIMA-CNN-
LSTM model, with its structure shown in Figure 1. 
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Figure 1 SSA-VMD-CNN-LSTM Model Structure 

2. Construction of the SSA-VMD-ARIMA-CNN-LSTM Model and Empirical Analysis 
2.1 SSA-VMD Decomposition 

Given that the VMD algorithm requires setting the number of modes  k and the penalty factor α 
in advance for practical applications, and that these two parameters significantly affect the final 
decomposition results[5], This paper uses the SSA to adaptively optimize the parameters, achieving 
efficient tuning of the VMD decomposition.  

2.1.1 SSA Section 
The SSA algorithm is inspired by the foraging behavior of sparrow populations, utilizing the roles 

and interactions between "foragers" and "predator" during the food search process to perform global 
optimization.[6]This paper applies SSA for the intelligent selection of VMD parameters 

① Population Initialization 
The position of the sparrow individual 

 Xi = [αi, ki]                                (1) 

Where 𝛼𝛼𝑖𝑖  and 𝑘𝑘𝑖𝑖  represent the penalty factor and number of modes in VMD. The fitness 
function is the sum of the permutation entropy (PE) of each IMF after VMD decomposition, used to 
measure the complexity of the sequence. 

② Position Update 
The forager position update equation is as follows: 

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡+1 = � 𝑋𝑋𝑖𝑖𝑖𝑖
𝑡𝑡 · 𝑒𝑒

−𝑖𝑖
𝛼𝛼·𝑇𝑇 ,𝑅𝑅2 < 𝑆𝑆𝑇𝑇

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑄𝑄 · 𝐿𝐿 ,𝑅𝑅2 ≥ 𝑆𝑆𝑇𝑇
                         (2) 

The Predator position update equation is as follows: 
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The sentinel position update equation is as follows： 
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The parameters for SSA are set as shown in Table 1. 
Table 1: SSA Algorithm Parameter Settings 

Population 
Size 

Number of 
Iterations 

Lower 
Bond 

Upper 
Bond 

ST PD SD 

5 20 [800,4] [2000,8] 0.7 0.4 0.4 
The SSA algorithm begins to converge after approximately 3 iterations. In the initial stage, the 

fitness value decreases rapidly; subsequently, as the number of iterations increases, the rate of 
decrease gradually slows, and the curve eventually stabilizes. The penalty factor converges to 1485, 
and the number of modes converges to 8. 

2.1.2 VMD Section 

For the original carbon price sequence 𝑃𝑃(𝑡𝑡) ,VMD attempts to decompose it into 𝑘𝑘  modes 
{𝑢𝑢𝑖𝑖(𝑡𝑡)}𝑖𝑖=1𝑘𝑘 ,with corresponding center frequencies {𝜔𝜔𝑖𝑖}𝑖𝑖=1𝑘𝑘  

Through Fourier transform, the carbon price sequence 𝑃𝑃(𝑡𝑡) and its corresponding frequency 
domain can be expressed as: 

𝑃𝑃(𝑡𝑡) = ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝐾𝐾
𝑘𝑘=1                                (5) 

𝑈𝑈(𝜔𝜔) = ∑ 𝑈𝑈𝑘𝑘𝐾𝐾
𝑘𝑘=1 (𝜔𝜔)                              (6) 

The Fujian carbon price sequence is decomposed using VMD, resulting in 8 IMF subsequences, 
as shown in Figure 2. 

 
Figure 2 SSA-VMD Decomposition Results 

From the figures, it can be observed that the trend of the linear subsequences exhibits a clear long-
term direction. In contrast, the nonlinear subsequences do not show an obvious trend but instead 
display strong random characteristics, oscillating around a certain level. 

2.2 Targeted Modeling for Each IMF 
2.2.1 Prediction of Linear IMF 

The ARIMA model is very good at capturing the linear component of the carbon price series.[7] 
When an IMF subsequence exhibits relatively stable or linear trend characteristics, the ARIMA(p,d,q) 
model can be used for prediction. The mathematical form of the ARIMA model can be written as: 

Φ𝑝𝑝(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) = Θ𝑞𝑞(𝐵𝐵)𝜀𝜀𝑡𝑡                      (7) 

IMF1 exhibits the long-term trend of the carbon price sequence, and its nonlinearity, non-
stationarity, and complexity have been significantly reduced. Therefore, the ARIMA model from 
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traditional statistical models is used to predict IMF1. 
The results of the ADF test for IMF1 are shown in Table 2. 

Table 2 ADF Test Results for IMF1 

Order Test Statistics P value 
0 -2.956 0.039 
1 -2.362 0.153 
2 -3.636 0.005 

Further analysis of IMF1 was conducted, and the ACF and PACF plots for IMF1 are shown in 
Figure 3. 

 
Figure 3 The ACF and PACF plots for IMF1 

Based on this result, suitable parameters were selected and the ARIMA model was used to fit IMF1, 
with the results shown in Table 3. 

Table 3: ARIMA Fitting Results for IMF1 

Evaluation Metrics R2 MSE RMSE MAE 
Value 0.9999 4.9057× 10−5 0.0070 0.0055 

2.2.2 Prediction of Nonlinear IMF 
Given the significant non-stationarity and complexity of the nonlinear subsequences, complex 

models with strong feature learning capabilities are needed for fitting. This paper uses single CNN, 
single LSTM, and CNN-LSTM models to fit and predict IMF2-IMF8, selecting the best model as the 
final result. [8]The prediction results are shown in Figure 7, with the results for IMF2 presented as an 
example. 
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Figure 4 The Prediction Result of IMF2 
The results show that for IMF2, the prediction performance of the single LSTM model is the worst. 

To compare the prediction accuracy more specifically, a summary of the prediction accuracy for 
different models is provided in Table 4. 

Table 4 IMF2 Prediction Accuracy Summary Table 

Model MSE RMSE MAE R2 
LSTM 0.0053 0.0728 0.0598 0.8548 
CNN 0.0010 0.0310 0.0265 0.9736 

CNN-LSTM 0.0018 0.0422 0.0356 0.9512 
The final chosen prediction models for each IMF component are shown in Table 5. 

Table 5: Prediction Models for Each Component 

Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 
model ARIMA CNN CNN-LSTM CNN LSTM LSTM CNN CNN 

3. Model Evaluation 
3.1 Evaluation of VMD Algorithm Effectiveness 

Strategy 1: Directly use CNN-LSTM to predict the overall carbon price sequence 
Strategy 2: After applying VMD decomposition, use CNN-LSTM to predict each subsequence, 

and then combine them to predict the overall sequence.  
By comparing Strategy 1 and Strategy 2, the effect of VMD decomposition on carbon price 

sequence prediction can be determined. The comparison is shown in Figure 5. 

 
Figure 5 Comparison of Prediction Effect with and without VMD 

The comparison of prediction accuracy with and without the VMD algorithm is shown in Table 6. 
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Table 6 Comparison of Prediction Accuracy with and without VMD 

 MSE RMSE MAE 
CNN-LSTM 18.6322 4.3165 3.3928 

VMD-CNN-LSTM 7.1316 2.6705 2.1911 

3.2 Evaluation of SSA for VMD Parameter Optimization 
As mentioned earlier, the parameters for VMD are limited to a number of modes between 4 and 8, 

and a penalty factor between 800 and 2000. The comparison between manually selected parameters 
and those optimized by SSA for the model parameters demonstrates the effect of SSA on VMD 
parameter optimization. The comparison results are shown in Table 7. 

Table 7 Comparison of SSA Parameter Optimization and Manual Parameter Selection 

Parameter(k,𝜶𝜶) MSE RMSE MAE 
(5,1000) 11.6846 3.4183 2.8000 
(6,1200) 11.0561 3.3250 2.7926 
(7,1400) 9.9046 3.1471 2.7000 
(8,1898) 7.1316 2.6705 2.1911 

3.3 Comparison of Single Prediction Models and Hybrid Prediction Models 
Strategy 1: Use CNN for each component prediction 
Strategy 2: Use LSTM for each component prediction 
Strategy 3: Use CNN-LSTM for each component prediction 
Strategy 4: Select the optimal model for each component and construct a hybrid prediction model 
A comparison of all strategies is shown in Figure 6 and Table 8. 

  

  

Figure 6 Comparison of Single Prediction Models and Hybrid Prediction Models 
Table 8 Comparison of Single and Hybrid Prediction Model 

 MSE RMSE MAE 
Single CNN 58.1090 7.6229 7.4209 

Single LSTM 4.6126 2.1477 1.7830 
Single CNN-LSTM 7.1316 2.6705 2.1911 

Hybrid Model 1.4415 1.2006 0.9795 
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From Figure 6 and Table 8, it can be seen that selecting the appropriate model for each IMF 
component, as opposed to using a unified single model, greatly improves the prediction capability of 
the model. 
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